
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41185 384

A Polynomial Time Algorithm to Determine

Singly Connectivity in Directed Graph

Ishwar Baidari
1
, Rashmi Gangadhar

2

Associate Professor, Dept. of Computer Science, Karnataka University, Dharwad, India
1

Assistant Professor, Dr D Y Patil Institute of MCA, Akurdi, Pune, Maharashtra, India
2

Abstract: In this paper, we consider the problem of determining whether or not a directed graph is singly connectedi.e.

a directed graph is singly connected if for any pair of vertices there exists at most one simple path connecting them and

also undirected graph is singly connected if and only if it is a tree. We have given a straight forward implementation of

this problem using DFS algorithm theory which takes polynomial time to check it.

Keywords: DFS; source vertex; cyclic; tree; spanning forest.

I. INTRODUCTION

Graph connectivity has become a widely studied property

of graph theory. Graph connectivity theories are

essentially in computer communication network

applications such as routing, transportation networks,

separation edges and vertices correspond to singly point of

failure in a network etc.,

In this paperwe investigated another connectivity problem:

determining if a graph has at most one distinct path

between every pair of vertices. In particular, we say a

directed graph is singly connected if there existsat most

one simple path between every pair of vertices. If there are

two distinct simple paths connecting any two vertices, the

graph is not singly connected. An undirected graph is

singly connected if and only if it is a tree[2].

1.1 Definitions:

We used graph terminology; see e.g.. [1]. In particular

given a directed graph G = (V, E) with n = |v| and

m = |E| . a path connecting two vertices u, v ∈ V in a

sequence of nodes (u = u0, u1 …… ul = v) such

that (ui , ui+1) ∈ E, 0 ≤ i < 𝑙 . A path is a simple path

if ui ≠ uj ∀ i ≠ j . Two paths (u0 …………… uk) and

(u0 …… . ui) distance if either (1) k ≠ 1 or (2) k = l and

ui ≠ vi for some 0 ≤ i ≤ l. A cycle is path (u0 …… . ul)

Such that u0 = ul a simple cycle is cycle (u0 …… . ul)

Such that ui ≠ uj , 0 ≤ i < 𝑗 < 𝑙 givien some cycle a chord

is a path of arcs none of which is on the cycle connecting

two distance node at these cycles

1.2 Definition:

A diagraph = (V, A) is singly connected if and only if for

any two verticesu, v ∈ v. there exists at most one simple

path connection u&𝑣.

II ALGORITHM FOR SINGLY CONNECTIVITY

In this section we designed an algorithm to determine

single connectivity. A directed graph G= (V , E) is

singly connected if u ~> v implies that G contains at

most one simple path from u to v for all vertices u,v ϵ

V. give an efficient algorithm to determine whether or

not a directed graph is singly connected.

A simple algorithm designed for solving the single

connectivity of the graph. In this algorithm we have used

the concept of DFS algorithm. We have taken U as a

source node, from that node we started to traverse each

and every other node of graph to check whether there

exists single path between source and other node of a

graph by making use of count value.

SinglyConnected(G)

1. U = source

2. First_loop: for each vertex v ϵ G – { U }

3. Count=0

4. For each x ϵ G.Adj(U)

5. For each vertex g ϵ G

6. g.color = WHITE

7. U.color = GRAY

8. Count=SimplePath(U,V,x)

9. If Count = = 1|| count = = 0

10. gotofirst_loop;

11. Otherwise

12. Write “ not singly connected”

13. Exit from process

14. Write “ The given graph is singly connected”

SimplePath(U ,V, x)

1. If x = = V

2. return ++count

3. x.color=GRAY

4. for each y ϵ G.Adj(x)

5. if y.color = = WHITE

6. Count = SimplePath(U,V,y)

7. return count

Singly Connected procedure work as follows: In line 1 we

assumed U as a source node. In Line 2 considered every

node of a graph as destination node except source node U.

Lines 3-8 determines number of simple path between the

source node U and any other node. Line 3 initializes count

to zero, line 4 starts to check the path for each adjacent

node of U. Since we need to check the path for every

adjacent node of a U, it is necessary to paint all the nodes

of a graph as WHITE color which indicates we are not

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41185 385

traverses any node of a graphfrom Lines 5-6. As algorithm

start to traverse from U, paint GRAY color to U to

indicate that node has visited in line 7. Every time

Simplepath(U, V, x) procedure is called in line 8, finding

a path to destination node V through new adjacent vertex

„x‟ of U and updated value is recorded in count variable.

Lines 4-8 repeats for all adjacent nodes of U. finally count

holds the exact value of number of path between U and V.

From lines 9- 13 checking the value of count variable, if

the value of count =0 means there is no path to destination

node V and count = 1 means then there exist only one path

to V. in both the cases control returning back to line 2 to

take next destination node. Otherwise we can conclude the

given graph is not singly connected because for a

particular destination node V there exist more than one

path which violates the definition of singly connected and

stop to proceed further.

Line 14 executed if and only if there exist exact one path

or no path to all other nodes of a graph it means given

graph is singly connected.

In each call SimplePath (U, V, x), checking whether the

visited adjacent node is destination node or not if so return

count value in line 1-2. Line 3 paints x to GRAY. Lines 4-

6 examine each vertex y ϵ Adj[x] and recursively visit y if

it is WHITE.

The algorithm traced for the following graph. Graph-1 and

Graph-2 are Directed Singly Connected Graph. Graph-3

and Graph-4 are Directed not singly connected Graph.

Graph-1

Graph-2

Graph-3

Graph-4

REFERENCES

[1] Introduction to Algorithms, 3rd Edition, The MIT Press
Cambridge, Massachusetts London, England. Thomas

H. Cormen, Charles E. Leiserson, Ronald L. Rivest,

Clifford Stein [page no. 594].
[2] Adam L.Buchsbaum , Martin C.Carlisle. “Determining Single

Connectivity in Directed Graph “ , CS-TR-390-92 September 1992.

a b g

c d h

e f

3

5

4 8

1

2 7

6

1 2

0 4 3

	INTRODUCTION
	REFERENCES

