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Abstract: In this paper, we consider the problem of determining whether or not a directed graph is singly connectedi.e. 

a directed graph is singly connected if for any pair of vertices there exists at most one simple path connecting them and 

also undirected graph is singly connected if and only if it is a tree. We have given a straight forward implementation of 

this problem using DFS algorithm theory which takes polynomial time to check it. 
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I. INTRODUCTION  
 

Graph connectivity has become a widely studied property 

of graph theory. Graph connectivity theories are 

essentially in computer communication network 

applications such as routing, transportation networks, 

separation edges and vertices correspond to singly point of 

failure in a network etc., 

In this paperwe investigated another connectivity problem: 

determining if a graph has at most one distinct path 

between every pair of vertices. In particular, we say a 

directed graph is singly connected if there existsat most 

one simple path between every pair of vertices. If there are 

two distinct simple paths connecting any two vertices, the 

graph is not singly connected. An undirected graph is 

singly connected if and only if it is a tree[2]. 
 

1.1 Definitions: 

We used graph terminology; see e.g.. [1]. In particular 

given a directed graph G = (V, E)  with n = |v|  and 

m = |E| . a path connecting two vertices u, v ∈ V  in a 

sequence of nodes (u = u0, u1 …… ul = v)  such 

that (ui , ui+1) ∈  E, 0 ≤ i < 𝑙 . A path is a simple path 

if ui ≠ uj  ∀ i ≠ j . Two paths (u0 ……………  uk)  and 

(u0 …… . ui) distance if either (1) k ≠ 1 or (2) k = l and 

ui ≠ vi  for some 0 ≤ i ≤ l. A cycle is path (u0 …… . ul) 

Such that u0 = ul  a simple cycle is cycle (u0 …… . ul) 

Such that ui ≠ uj , 0 ≤ i < 𝑗 < 𝑙 givien some cycle a chord 

is a path of arcs none of which is on the cycle connecting 

two distance node at these cycles 
 

1.2 Definition: 

A diagraph = (V, A) is singly connected if and only if for 

any two verticesu, v ∈ v. there exists at most one simple 

path connection u&𝑣. 
 

II ALGORITHM FOR SINGLY CONNECTIVITY 
 

In this section we designed an algorithm to determine 

single connectivity. A directed graph G= (V , E) is 

singly connected if u ~> v implies that G contains at 

most one simple path from u to v for all vertices u,v ϵ 

V. give an efficient algorithm to determine whether or 

not a directed graph is singly connected. 

 
 

A simple algorithm designed for solving the single 

connectivity of the graph. In this algorithm we have used 

the concept of DFS algorithm. We have taken U as a 

source node, from that node we started to traverse each 

and every other node of graph to check whether there 

exists single path between source and other node of a 

graph by making use of count value. 
 

SinglyConnected( G ) 

1. U = source 

2. First_loop: for each vertex v ϵ G – { U } 

3.       Count=0 

4.       For each x ϵ G.Adj(U) 

5.              For each vertex g ϵ G 

6. g.color = WHITE 

7. U.color = GRAY 

8.             Count=SimplePath(U,V,x) 

9.        If Count = = 1|| count = = 0 

10. gotofirst_loop; 

11.        Otherwise 

12.                   Write “ not singly connected” 

13.                   Exit from process 

14. Write “ The given graph is singly connected” 
 

SimplePath(U ,V, x) 

1. If x = = V 

2.         return ++count 

3. x.color=GRAY 

4. for each y ϵ G.Adj(x) 

5.          if y.color = = WHITE 

6.                       Count = SimplePath(U,V,y) 

7. return count 
 

Singly Connected procedure work as follows: In line 1 we 

assumed U as a source node. In Line 2 considered every 

node of a graph as destination node except source node U. 

Lines 3-8 determines number of simple path between the 

source node U and any other node. Line 3 initializes count 

to zero, line 4 starts to check the path for each adjacent 

node of U. Since we need to check the path for every 

adjacent node of a U, it is necessary to paint all the nodes 

of a graph as WHITE color which indicates we are not 
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traverses any node of a graphfrom Lines 5-6. As algorithm 

start to traverse from U, paint GRAY color to U to 

indicate that node has visited in line 7. Every time 

Simplepath(U, V, x ) procedure is called in line 8, finding 

a path to destination  node V through new adjacent vertex  

„x‟  of  U   and updated value is recorded in count variable. 

Lines 4-8 repeats for all adjacent nodes of U. finally count 

holds the exact value of number of path between U and V. 
 

From  lines 9- 13 checking the value of count variable, if 

the value of count =0 means there is no path to destination 

node V and count = 1 means then there exist only one path 

to V. in both the cases control returning back to line 2 to 

take next destination node. Otherwise we can conclude the 

given graph is not singly connected because for a 

particular destination node V there exist more than one 

path which violates the definition of singly connected and 

stop to proceed further. 
 

Line 14 executed if and only if there exist exact one path 

or no path to all other nodes of a graph it means given 

graph is singly connected. 
 

In each call SimplePath (U, V, x), checking whether the 

visited adjacent node is destination node or not if so return 

count value in line 1-2. Line 3 paints x to GRAY. Lines 4-

6 examine each vertex y ϵ Adj[x] and recursively visit y if 

it is WHITE.  
 

The algorithm traced for the following graph. Graph-1 and 

Graph-2 are Directed Singly Connected Graph. Graph-3 

and Graph-4 are Directed not singly connected Graph. 
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